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Probability Densities in Configuration Space and 
the Hamilton-Jacobi Equation 

H. Ioannidou ~ 
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The characteristic solutions of the Hamilton-Jacobi equation give the energies 
of conservative physical systems as functions of position and time. It is shown 
that these expressions are useful in the formation of probability densities in con- 
figuration space for canonical ensembles. Applications are given and discussed. 

1. INTRODUCTION 

In statistical physics, the most important form of an ensemble of 
conservative physical systems is the so-called "canonical ensemble" intro- 
duced by Gibbs (Tolman, 1967) and defined by means of  the Hamiltonian 
of the considered system, as 

P(ql, q2 . . . . .  qn, Pl ,  P2 . . . . .  P,)  

( H(q i ,q2  , q ~ , P , , P 2 , . . . , P n ) )  . . . .  
= Po exp e 

where H is the Hamiltonian, e = const, the standard deviation, and P0 is the 
normalization coefficient. The canonical ensemble so defined gives distribu- 
tions (more accurately, probability densities) of energies in phase space, 
which have been very successful in the study of statistical equilibrium. 

If  we have a relation 

H(ql , q2 . . . . .  qn, PiP2 . . . . .  Pn) = E(ql , q2 . . . . .  qn, t) 

between the Hamiltonian function and a function E giving the total energy 
in terms of  position and time, then the theory of  probability permits us to 
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replace, under certain conditions (Papoulis, 1965), the function H by E in 
the exponent of the expression of p; that is, we can introduce the corre- 
spondence 

P(qi,Pi) ~f(qi, t)=f0exp( E(qi,)o t)) 

where now the parameters f0 and 2 may depend on time. If the integral 

I(t)=fvff(q,,q2 . . . .  ,qn, t)dq~...dq, 

exists in a volume V, then the func t ion fcan  be considered as a probability 
density function in V at a given time instant. 

In the next sections we shall proceed to the derivation of such 
functions f(qi, t) for some standard physical systems. Our computation will 
be based on solving the Hamil ton-Jacobi  equation by the method of the 
characteristics. We shall restrict our study to nonquantal cases. 

We note that the idea of deriving probability amplitudes in configura- 
tion space was first submitted by Feynman and Hibbs (1965). In this paper 
we consider the problem from another point of view, using a different, if we 
are allowed to say, more mathematical, method. 

In order to show the utility of the characteristic solutions, let us 
consider the Hamil ton-Jacobi  equation that corresponds to a conservative 
system, namely 

c3-}- + H ql, q2,- � 9  q,, 3q1' 0ql . . . . .  ~ q , / =  

The above equation, solved by the usual method of separation of 
variables, gives S = W(q~ . . . . .  q,) -Et,  and the energy results as -OS/ 
~3t = E, where E is an "absolute" constant not depending on space and 
time. On the other hand, the so-called "characteristic solutions" (John, 
1978; Courant  and Hilbert, 1962)of the Hamil ton-Jacobi  equation permit 
us to find the energies as functions of position and time. Such a solution is 
the well-known one of the free particles S = (m/2t)(q -qo) 2 with energy 
E =m(q-qo)Z/2t 2 (Feynman and Hibbs, 1965). This energy yields the 
probability density of normal form 

1 l / m "~./2 / m(q - -  q0)2~ 

with variance a 2 =  2tZe/m. 
We shall present several applications which will exhibit the meaning 

and potential usefulness of the method. We shall see that this study leads 
to some elegant and interesting results. 
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2. HARMONIC OSCILLATOR 

The H a m i l t o n - J a c o b i  equat ion o f  a linear harmonic  oscillator is 

OS 1 (63S~ 2 mco2q2 = 0  (1) 

0 t  +~mm \ O q ]  + - - 2 - -  

with the Hamil tonian 

p2  mco2 

H = ~m + - ~ -  q2 

Following the method  of  characteristics, we form the characteristic 
system of  equations (1), namely 

dq e 
dt - -m  ~ 

d H  dS 
- - = 0 7  
dt dt 

The general solution o f  (2) is 

dP 
- mco2q 

dt 

[3 2 mco 2 

2m 2 q 

q(t) = cl cos cot + c 2 sin cot 

P(t) = -mco(c l  sin cot - c 2 cos cot) 

mco2 2 
H (c, + 

mco 2 
S(t)  = ~ -  [(c2 -- c 2) sin 2cot + 2cl c2 cos 2cot] 

or  we obtain the following two partial solutions: 

q = el cos cot 

P = - m c o c  1 sin cot 

mco 2 
c, 

mco 
S = ---~-- c 2 sin 2cot 

and 

q = c 2 sin cot 

P = mcoc 2 cos cot 

mco2 2 
H = ~ - c  2 

(2) 

(3) 

(4) 

mco 2 
S ~ - -  c 2 sin 2cot 
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The solutions (3) and (4) form two so-called '!characteristic strips" of 
equation (1). From these by elimination of the constants in the correspond- 
ing expressions of S we get two characteristic solutions of (1), namely 

mco 2 ~ 
SI = ~ q tan cot / 

me) 2 ~ / (5) 
S n = - ~ - q  cot cot J 

Accordingly the energies are 

mco2 q2 t E l =  2 cos2co~ 

E l l  - -  mco 2 q2 (6) 
2 sin 2 cot 

From the above expressions of the energies we form the following 
probability densities in configuration space 

fl - cos co~ \~--@ exp 25 cos 2 cot 

_ co [ m  '~1/2 f mco2 q2 } 
f l ,  sin cot ~2-~rce; exp~ 2e sinZco t 

(7) 

which are normal with periodic time-dependent standard deviations 

cos,o,( f sir,,o, 
o- 1 - and ~r 2 - 

co co 

The constant e depends on the particular ensemble considered 
(Schr6dinger, 1967). We note that the functions (7), together with their 
associated velocities 

10S  I 1 8Sn 
O I - -  -coq tan cot, un - coq cot cot 

m 8q m c3q 

satisfy the equation 

v~ ~q +J~ ~q + = 0, 7 = I, II (8) 

i.e., the equation of continuity for an ensemble of particles described by the 
model. 



Probability Densities in Configuration Space 55 

3. ELECTRON IN UNIFORM MAGNETIC FIELD 

This case consists of a three-dimensional problem. In order to simplify 
it, we consider the standard vector potential 

A = � 8 9  

The Hamilton-Jacobi equation then is 

[- m2to 2 ( y  OS 8S']-] 0 
8S8t + ~ml [ (VS)2+___4__(x2+y2)  +moo ~x - x ~ y y l j =  (9) 

and the Hamiltonian 

p2 into2 oJ eH 
H = ~ m  + - - ~ -  (x2 + Y 2) + - ~ ( Y P x  - X P y ) ,  to =--mc 

The charac ter i s t ic  system is 

to ay to __=_:_  + y, m . . . .  
dt m -2 dt m 2 x 

dPx mto 2 o9 Py, dPy m~o 2 to 
d---t - =  ----4 - x + 5  dt = ----4 -- y - 2 P~ 

dz P: dP: dH dS p2 mco2 
--~ m '  dt O, dt O, dt 2m 8 (X2 +Y2) 

(10) 

and has the general  so lu t ion  

x = C~ sin tot + C2 cos tot + C3 

y = - C2 sin 09t + CI cos tot + C4 

mto 
ex  = - ~  ( - (72 sin tot + C1 cos tot - Ca) 

mto 
Py = sin + C2 cos - '  2 (C1 tot tot - (73) 

Po- 
z = v. t + z0, P= = Po~ = const ,  H = const  

m 

m to P2  z 
S = - ~ -  [(C1 C3 - C2C4) cos tot - (C2C3 + CI C4) sin cot] + ~ t 

(11) 

(12) 

Inspection shows tha t  the character is t ic  s tr ips  result  f rom the fol lowing 
partial solut ions:  
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x = C~ sin ~ot + C3 

y = C~ cos  cot 

mfD 
P~ = ~ C1 cos  cot 

mfD 
Py = - ~ -  C1 sin ~ot 

p2  
m o o  C C + �9 o~ t 

S = ~ - -  t 3 c O s c ~  
2m 

x = C~ sin cot 

y = Cl cos  cot + Ca 

moo C 
P x = ~ - (  i cos  cot - C4) 

m(.o 
Py = - ~ -  C, sin cot 

m ~  C1 C4 sin ~ot + P~ 
S -  2 ~ m  

x = C2 cos  cot 

y = ( " C 2  sin cot - C4) 

l 
m(D 

Px = ~ ( - C2 sin cot - C4) 

mo9 
Py = - ~ -  C2 cos cot 

m~o (72 C4 cos  cot + e~ s =  - 5 -  Tm t 

X ~- C 2 c o s  cot + C 3 

y = - C2 sin cot 

m(.o 
P~ = - ~ -  C2 sin cot 

mo9 
Py = - ~ -  ( G  cos ~ot -- G )  

moo C2 C3 sin ~ot + t 
S =  2 zm 

(13) 

(14) 

(15) 

(16) 
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while in all the above solutions we consider z = ( P o ~ / m ) t + Z o ,  
P~ = Po~ = const, H = const. 

From the above four "strips" we get the corresponding solutions 

mco . mco m(z -- Zo)2~ 
S ~ =  - - x  ~tan~ot - - x y + - - - ~  I 

2 2 2t 

m c o  . mco m(z - -  Z0) 2 | 
&b = ~ -  X~ cot cot -- -~-- xy -~ ~ J 

(17) 

mco 2 ma~ q _m(z Zo)2[ 
$2~= - ~ - y  tancot + - ~ -  xy  --~ - 

mco 2 mm m(z - -  ZO) 2 
S2b = -~-  Y cot ~Ot + ~ -  xy + 2t j 

(18) 

The energies E = - a s ~ a t  result as 

mco2x 2 m(z - Zo)~ 

E,~ -- 2 COS2 cot ~- 2t 2 

mco2x 2 m ( z  - -  z0)2I 
Elb = 2 sin 2 o~t -~ 2t 2 j 

(19) 

~ o -  
m o2y  m(Z - Zo)21 

2 cos 2 cot + - - ~ 2 - - -  l 

mcoZy 2 m(z - z0)21 

2 sin 2 cot + ~ J 

(20) 

So, for the case of  electrons in a uniform magnetic field we distinguish 
the following four probability density functions: 

m ~  exp - 
fi~ = 2 ~ t  cos cot 

=A(x; t)~ (z; 0 

me) exp -~-~ \ ~  + 
fib = 2 ~ t  cos ~ot 

= gl (x ;  t)~o, (z; t) 

(21) 
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{ me) exp --~e ~ , ~ y  -+- 
f za  2ne t  cos cot 

=f•  t)q~ II (z; t) 

m _ _ y 2 q _  
mco exp -~--~ sin2 cot fzb -- 2rt~t sin cot 

= gl(Y; t)tPll (z; t) 

(22) 

Comparing the results (19)-(22) with those of the previous sections, 
we see that the model shows the electrons to behave like free particles in the 
direction parallel to the field and like linear harmonic oscillators in the 
plane perpendicular to the field. In particular, the densities show that the 
probability of finding a particle at some given position on the level 
perpendicular to the field and that of finding a particle along the direction 
of the field are statistically independent. These results are plausible and 
consistent with the theory of electrodynamics and observations. But let us 
now investigate what happens with the gauge invariance. 

4. GAUGES OF THE VECTOR POTENTIAL 

With regard to equation (9) let us now study the following two 
Hamilton-Jacobi equations: 

~ + 2~ (VS) 2 mco 2 aS 
+ T y2 + coy ~xx = 0 (23) 

a S  1 2 mco2 a S  
a t  + ~m (VS) + T x2 - cox fffy = 0 (24) 

resulting respectively, for the gauges of the vector potential 
A 1 = ( --Hy, 0, 0), A 2 = (0,  Hx, 0), and see whether the gauge invariance is 
preserved in the present theory. 

Using the same method as previously, we find the following solutions 
for equation (23): 

2--mco 2. " mcoxy  . m ( z ~ z o ) 2 ~  
Sla  = X tan cot --  -t- - - - -  9 t - -  

me)  2 ~ r e ( z - -  )2 ~ (25) 
S1b ~ X  COt c o t - - m c o x y +  ~ z ~  

with the energies 
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mo)2x 2 m(z -- Zo)21 
Ela -- 2 cos ~ co~ + 2t 2 [ 

Eib = mco2x2 m(z -- Zo) 2 ? | (26) 
2 sin2 cot + 2t z .J 

The probability densities for the case o f  the gauge potential 
( - H y ,  0, 0) are 

mco exp -- x 2 4 
fla = 2~zet cos mt ~ee 

=f l (x ;  t)q)lj (z; t) 
(27) 

{ m co2 (z t ; ~  mco - - ~  ( ~  
flb = 2~et sin-cot exp x2+ 

= g_L(x; t)~oll (z; t) 

We note that the above functions coincide exactly with (21) of the previous 
section�9 

With regard to equation (24), corresponding to the gauge(O, Hx, 0), 
we have the solutions 

mco ~ m(z -- Zo) 2"] 
Sna = -~-  y~ tan cot + mcoxy + - - -  ~ .1  

mco . m(z - Zo) 2 ? / (28) 
SHb = ~ Y ~ cot COt + mcoxy 4 2t J 

with the energies 

Eiia mco2Y 2 i m ( z ~ z o ) 2  l 
= 2 cos 2 cot 

Enb mco2Y2 re (z- -z2)2 /  
2 sin 2 cot + 2 t  J 

and the respective probability densities { (~ = m y2+  
mco exp -2-~e cos 2 cot f n .  2~et cos cot 

=f~(y ;  t)q~ ii (z; t) 

{ m c o ( ~  ( z t ; o ) 2 ) }  too9 exp --2-ee yZ + �9 
rub = 2get sin cot 

=g• (z; 0 

(29) 

(30) 
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Again the above functions coincide with the ones given by equations 
(22). So we conclude that gauge invariance is preserved with regard to the 
probability densities, but not absolutely. We have seen that the "complete" 
Hamilton-Jacobi equation (9) contains the densities of both the gauge- 
transformed ones (23) and (24). Also, we note that the results (25) and (28) 
are not identical, and in order to make them coincide we have to apply the 
orthogonal transformation in x, y 

;)C) 
i.e., a n/2 rotation of the x y  plane. 

The content of this and the previous section suggests two slightly 
different behaviors of electrons in  a uniform magnetic field. It is possible 
that this fact has some connection with the spin property, where also one 
observes a splitting in the behavior of two otherwise identical electrons. But 
let us leave this idea for a future study. 

Finally, we remark that one can easily verify that the velocities 
v = ( l / m )  grad S and their associated probability densities satisfy the equa- 
tion of continuity 

t) g r a d f  + f  div v + ~ = 0 

5. ATTRACTIVE POTENTIAL 

A standard two-dimensional problem is the problem of an attractive 
potential. In this case we consider the Hamilton-Jacobi equation 

as 1 1/es 2q 
- -  / / - - !  - -  = 0  ( 3 1 )  

and the Hamiltonian 

1 e - - -  
V 

The characteristic system is 

dr Pr 

dPr p2 

dt mr 3 

d H  
- - ~ 0 ,  
dt 

~2 
a = const (32) 

r '  

dO P~ 
dl  m r  2 

o~ 2 dP~ = 0 

r 2" d t  

dS  2~ 2 
- -  = H + - -  
d t  r 

(33) 
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from which eventually we have H = H~ = const and P~ = P~ = const. 
Introducing the functions 

R(r) = 2mHcr2~+ 2rn~2r p 2  (34) 

I(r) = f [ 
dr 

R(-O] ,/2 (35) 

and the relation (Landau and Lifchitz, 1966) 

dr 
m r - -  = dt (36) 

we get the solution of the canonical system in the implicit form 

x / ~  - me2I(r) = 2H~(t + 4) (37) 

mo~2r -- P ~  
sin(0 + 0~) --r(2rnH~p2o c + m2e4 ) ,/2 (38) 

The equation in S(t)  gives, by means of equations (36) and  (37), the 
solution 

S = 2 x / ~  - 3H~t (39) 

The constant H~ can be evaluated from the relation 

dH,, _ x / R  dHc O, or dH~ = 0 
dt mr dr dr 

From (37) we have 

2(t + to) -- mGt2 H~ 

The above relation gives 

Hc = 0 (40) 

Consequently the solution (39) becomes 

S = 2(2m~2r - P~c)i/2 (41) 

The constant Poe is expressed in terms of r, oq by means of equation 
(38) for Hc = 0, as 

P~c = m~Zr[ 1 - sin(~ + 0c)] (42) 
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By means of (42) and (41) we finally get the characteristic solution of 
our initial equation (31), namely 

S(r, 0) = 2{m~2r[ 1 - sin(0 + 0c)] }1/2 (43) 

The resulting energy is - 3 S / d t  = E = O. 
We see that the characteristic energy in the present case vanishes. Let 

us call such a physical system [i.e., w i t h E  = - a S ( q ,  t)/Ot = 0] a "hyper- 
conservative system." 

The characteristic density here is expected to be represented by a 
nonnegative function of the form f = f o u ( r , O )  a n d  such that 
S~ ~o J ar,  O)r dr dO < ~ .  

The property Of]Ot = 0 means that there is no spreading of the 
distribution of hyperconservative systems with time. This fact is significant, 
since it would explain the observed stability and very long lifetime of 
certain physical systems of aggregates of particles or bodies. 

REFERENCES 

Courant, R., and Hilbert, D. (1962). Methods in Mathematical Physics, VoL II, Interscience, 
New York. 

Feynman, R. P., and Hibbs, A. R. (1965). Quantum Mechanics and Path Integrals, McGraw- 
Hill, New York. 

John, F. (1978). Partial Differential Equations, 3rd ed., Springer, New York. 
Landau, L., and Lifchitz, E. (1966). M~canique, Mir, Moscow. 
Papoulis, A. (1965). Probability Random Variables and Stochastic Processes, McGraw-Hill, 

New York. 
Schr6dinger, E. (1967). Statistical Thermodynamics, Cambridge University Press, Cambridge. 
Tolman, R. C. (1967). The Principles of Statistical Mechanics, Oxford University Press, 

Oxford. 


